Les matrices

Notion de matrice

Définitions

Soient n et m deux entiers naturels non nul.

On appelle matrice de taille $m \times n$ un tableau de nombres réels formé de m lignes et de n colonnes. On la représente sous la forme :

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Les a_{ij} sont des nombres réels appelés les **coefficients** de la matrice.

Le coefficient a_{ij} est le nombre réel situé à l'intersection de la ligne i et de la colonne j.

Exemples

La matrice
$$A = \begin{pmatrix} 3 & -2 \\ \sqrt{2} & 42 \\ -0, 2 & 6, 8 \end{pmatrix}$$
 est une matrice de taille 3×2 (3 lignes et 2 colonnes).
La matrice $B = \begin{pmatrix} 1 & 2 & 3 \\ -5 & -7 & -1 \end{pmatrix}$ est une matrice de taille 2×3 (2 lignes et 3 colonnes).

Définition: matrice ligne

Soit n un entier naturel non nul.

On appelle **matrice ligne** une matrice de taille $1 \times n$.

Exemple

La matrice $C = \begin{pmatrix} 2 & -1 & 4 \end{pmatrix}$ est une matrice ligne. Elle représente les coordonnées d'un point de l'espace.

Définition: matrice colonne

Soit n un entier naturel non nul.

On appelle matrice colonne une matrice de taille $n \times 1$.

La matrice
$$D = \begin{pmatrix} 2 \\ 5 \\ 1 \\ 0 \end{pmatrix}$$
 est une matrice colonne.

Définition: matrice carrée

Soit n un entier naturel non nul.

On appelle matrice carrée une matrice de taille $n \times n$, qui a donc le même nombre de colonnes et de lignes.

On parle aussi de matrice carrée d'ordre n.

Exemple

La matrice $A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ est une matrice carrée d'ordre 2.

2 Opérations sur les matrices

Définition : somme de matrice

Soient A et B deux matrices de même taille.

La somme de A et B est la matrice, notée A + B, dont le coefficient d'indice ij est la somme de a_{ij} et de b_{ij} .

Exemple

On considère les deux matrices $A = \begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 5 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix}$.

$$\mathbf{A} \, + \, \mathbf{B} \, = \, \left(\begin{array}{ccc} 1 & 2 & 0 \\ 4 & 3 & -1 \end{array} \right) \, + \, \left(\begin{array}{ccc} 5 & 2 & 3 \\ 1 & 3 & 4 \end{array} \right) \, = \, \left(\begin{array}{ccc} 1 + 5 & 2 + 2 & 0 + 3 \\ 4 + 1 & 3 + 3 & -1 + 4 \end{array} \right) \, = \, \left(\begin{array}{ccc} 6 & 4 & 3 \\ 5 & 6 & 3 \end{array} \right)$$

Propriétés

Soient A, B et C trois matrices de même taille.

- La somme de deux matrices est commutative : A + B = B + A.
- La somme de deux matrices est associative : (A + B) + C = A + (B + C).

Définition: produit d'une matrice par un réel

Soit A une matrice et soit λ un nombre réel.

La **produit** de A par λ est la matrice notée λ A dont le coefficient d'indice ij est le nombre $\lambda \times a_{ij}$.

Exemple

En reprenant l'exemple précédent : $-3A = \begin{pmatrix} -3 \times 1 & -3 \times 2 & -3 \times 0 \\ -3 \times 4 & -3 \times 3 & -3 \times (-1) \end{pmatrix} = \begin{pmatrix} -3 & -6 & 0 \\ -12 & -9 & 3 \end{pmatrix}$.

Définition : produit d'une matrice carrée par une matrice colonne

Soit A une matrice carrée d'ordre n et B une matrice colonne à n lignes telles que :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$

Le produit de la matrice A par la colonne B est la matrice colonne à n lignes telle que :

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} a_{11} \times b_1 + a_{12} \times b_2 + \dots + a_{1n} \times b_n \\ a_{21} \times b_1 + a_{22} \times b_2 + \dots + a_{2n} \times b_n \\ \dots \\ a_{n1} \times b_1 + a_{n2} \times b_2 + \dots + a_{nn} \times b_n \end{pmatrix}$$

Exemple

On considère les matrices $A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

$$A \times B = \begin{pmatrix} -1 \times 2 + 3 \times 5 \\ -2 \times 2 + 4 \times 5 \end{pmatrix} = \begin{pmatrix} 13 \\ 16 \end{pmatrix}.$$

Définition: produit de deux matrices

Soit A une matrice de taille $n \times p$ et soit B une matrice de taille $p \times q$.

Le produit des matrices A et B est la matrice C de taille $n \times q$ telle que le coefficient $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$.

Exemple

$$\begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & -1 \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 2 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 \times 5 + 2 \times 2 + 0 \times 3 & 1 \times 1 + 2 \times 3 + 0 \times 5 \\ 4 \times 5 + 3 \times 2 + (-1) \times 3 & 4 \times 1 + 3 \times 3 + (-1) \times 5 \end{pmatrix} = \begin{pmatrix} 9 & 7 \\ 23 & 8 \end{pmatrix}$$

Propriétés

- Le produit matriciel est associatif : A(BC) = (AB)C = ABC
- Le produit matriciel est distributif par rapport à l'addition : A(B+C)=AB + AC
- Le produit matriciel n'est pas commutatif = $AB \neq BA$.

3 Inverse et puissance

Définition

Soit n un entier naturel non nul.

On appelle la matrice unité d'ordre n la matrice carrée notée I_n telle que :

$$I_n = \left(\begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{array}\right)$$

Il s'agit de la matrice d'ordre n dont les coefficients sont nuls sauf sur la diagonale, où ils sont égaux à 1.

Propriété

Soit A une matrice carrée d'ordre n. On a :

$$A \times I_n = I_n \times A = A$$

Définitions

Soit n un entier naturel non nul.

Une matrice carrée A d'ordre n est dite **inversible** s'il existe une matrice carrée B d'ordre n telle que $A \times B = B \times A = I_n$.

La matrice B est alors appelée matrice inverse de A et est notée A^{-1} .

Remarque

Toutes les matrices n'admettent pas nécessairement d'inverse.

Définition

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où a, b, c et d sont des nombres réels.

Le nombre ad - bc est appelé le **déterminant** de la matrice A. On note alors :

$$\det(\mathbf{A}) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

Exemple

Le déterminant de la matrice $A=\left(\begin{array}{cc} 4 & 3 \\ 2 & 1 \end{array}\right)$ est $\det(A)=4\times 1-3\times 2=-2.$

Propriété

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où a, b, c et d sont des nombres réels. La matrice A est inversible si et seulement si son déterminant est non nul.

Définition

Soit n un entier naturel non nul. On considère une matrice carrée A. On appelle **puissance** n-ième de A la matrice notée $A^n = \underbrace{A \times A \times ... \times A}_{n \text{ fois}}$.

Exemple

On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$

$$A^{2} = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} \text{ et } A^{3} = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 13 & 14 \\ 21 & 6 \end{pmatrix}$$

Propriété

Soit D une matrice dont tous les coefficients sont nuls sauf sur sa diagonale. Soit n un entier naturel non nul. La matrice D^n est la matrice dont tous ses coefficients sont nuls sauf sur la diagonale où ils sont égaux aux coefficients de D à la puissance n.

Exemple

Soit D =
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} .$$

$$D^{6} = \begin{pmatrix} 2^{6} & 0 & 0 \\ 0 & (-1)^{6} & 0 \\ 0 & 0 & (-2)^{6} \end{pmatrix} = \begin{pmatrix} 64 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 64 \end{pmatrix}$$

Exemple : avec le numérique

Il est possible d'effectuer des calculs de puissances de matrice à l'aide de la calculatrice.

On souhaite calculer A = $\begin{pmatrix} 2 & 3 & -3 \\ 2 & 4 & 5 \\ -1 & 5 & -5 \end{pmatrix}^2$.

CASIO

Menu RUN.MAT puis choisir MAT à l'aide de la touche F1.

On rentre les coefficients de la matrice A.

On clique sur la touche QUIT puis sur la touche Mat et on saisit le calcul Mat A².

Exemple : avec le numérique (suite et fin)

Texas Instrument

On rentre dans le mode MATRIX puis EDIT.

On rentre les dimensions de la matrice puis on donne ses coefficients.

On choisit QUIT puis à nouveau MATRIX.

On sélectionne la matrice A et on complète la formule pour obtenir $[A^2]$.