Correction: fonction exponentielle

> Utiliser les propriétés de la fonction exponentielle

Exercice n°1

a.
$$\frac{e^7 \times e^{-4}}{e^{-5}} = e^{7 + (-4) - (-5)} = e^8$$

c.
$$\frac{1}{(e^{-3})^2} + \frac{(e^4)^{-1}}{e^2 \times e^{-6}} = \frac{1}{e^{-6}} + \frac{e^{-4}}{e^{-4}} = e^{-6} + 1$$

b.
$$(e^5)^{-6} \times e^{-3} = e^{5 \times (-6) + (-3)} = e^{-33}$$

d.
$$\frac{(e^{2x})^3}{e^{3x+1} \times e^{-x-1}} = \frac{e^{6x}}{e^{3x+1-x-1}} = \frac{e^{6x}}{e^{2x}} = e^{4x}$$

Exercice n°2

a.
$$\frac{e^{3x} \times e^{-1}}{e^{x-3}} = e^{3x-1-(x-3)} = e^{2x+2}$$

b.
$$\frac{e^3 \times e^x}{e^{-5} \times e^{-x}} = e^{3+x-(-5+(-x))} = e^{2x+8}$$

c.
$$\frac{1}{e^x} \times \frac{1}{e^{x+1}} = e^{-x} \times e^{-x-1} = e^{-x-x-1} = e^{-2x-1}$$

d.
$$\frac{e^{2x}}{x} + \frac{e^{-x}}{1+e^x} = \frac{e^{2x}(1+e^x) + xe^{-x}}{x(1+e^x)} = \frac{e^{2x} + e^{3x} + xe^{-x}}{x(1+e^x)}$$

Exercice n°3

a.
$$f'(x) = e^x + 2x$$

b.
$$f'(x) = 3e^x + 4$$

c.
$$f'(x) = 6x - 4e^x$$

d. On pose
$$u(x) = x - 1$$
 et $v(x) = e^x$. On a alors $u'(x) = 1$ et $v'(x) = e^x$. Donc $f'(x) = u'(x)v(x) + u(x)v'(x) = e^x + (x-1)e^x = xe^x$

e. On pose
$$u(x) = e^x$$
 et $v(x) = x + 1$. On a alors $u'(x) = e^x$ et $v'(x) = 1$.
Donc $f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{e^x(x+1) - e^x}{(x+1)^2} = \frac{xe^x}{(x+1)^2}$

f. On pose
$$u(x) = 1 + e^{2x}$$
 et $v(x) = e^{-3x} + 4$. On a alors $u'(x) = 2e^{2x}$ et $v'(x) = -3e^{-3x}$. Donc $f'(x) = u'(x)v(x) + u(x)v'(x) = 2e^{2x}(e^{-3x} + 4) + (1 + e^{2x})(-3e^{-3x}) = -e^{-x} + 8e^{2x} - 3e^{-3x}$

Exercice n°4

- **a.** Pour tout réel $x : e^x > 0$ et $x^2 + 4 > 0$ donc f(x) > 0 pour tout réel x.
- **b.** Pour tout réel $x: e^{-4x} > 0$. De plus, $x^4 \ge 0$ donc $-x^4 7 < 0$. Par quotient, f(x) < 0.
- **c.** Pour tout réel x, $e^{2x} > 0$ donc $1 + e^{2x} > 0$. De même, $e^{-3x} > 0$ donc $e^{-3x} + 4 > 0$. Ainsi, f(x) > 0 pour tout réel x.

d. Pour tout réel x, $e^x > 0$. On doit donc étudier le signe de $x^2 - x - 6$. $\Delta = (-1)^2 - 4 \times 1 \times (-6) = 25$. Puisque $\Delta > 0$ ce polynôme admet deux racines distinctes.

$$x_1 = \frac{-(-1) - \sqrt{25}}{2 \times 1} = -2$$

$$x_2 = \frac{-(-1) + \sqrt{25}}{2 \times 1} = 3$$

Ainsi, $x^2 - x - 6 \ge 0 \Leftrightarrow x \in]-\infty; -2] \cup [3; +\infty[\text{ et donc } f(x) \ge 0 \Leftrightarrow x \in]-\infty; -2] \cup [3; +\infty[$

> Résolution d'équations et d'inéquations

Exercice n°5

a.
$$e^x = e^{42}$$

$$\Leftrightarrow x = 42$$

b.
$$e^x - e^{-8} = 0$$

$$\Leftrightarrow e^x = e^{-8}$$

$$\Leftrightarrow x = -8$$

c.
$$e^x - 1 = 0$$

$$\Leftrightarrow e^x = 1$$
$$\Leftrightarrow e^x = e^0$$

$$\Leftrightarrow x = 0$$

$$\mathbf{d.} \quad \forall x \in \mathbb{R}e^x > 0$$

Donc l'équation

 $e^x = 0$ n'admet

aucune solution réelle.

e.
$$e^x - 2e^x = 0$$

 $\Leftrightarrow -e^x = 0$. Cette équation n'admet aucune solution réelle car $e^x > 0$ pour tout réel x.

f.
$$e^{2x+4} = e^7$$

$$\Leftrightarrow 2x + 4 = 7$$

$$\Leftrightarrow x = \frac{3}{2}$$

g.
$$e^{-3x+5}=1$$

$$\Leftrightarrow e^{-3x+5} = e^0$$

$$\Leftrightarrow -3x + 5 = 0$$

$$\Leftrightarrow x = \frac{5}{3}$$

h.
$$e^x + 5 = 0$$

 $\Leftrightarrow e^x = -5$ Cette équation n'admet aucune solution réelle car $e^x > 0$ pour tout réel x.

Exercice n°6

a.
$$e^x - 5xe^x = 0$$

$$\Leftrightarrow e^x(1-5x)=0$$

$$\Leftrightarrow 1 - 5x = 0 \text{ car } e^x > 0 \forall x \in \mathbb{R}$$

$$\Leftrightarrow x = \frac{1}{5}$$

b.
$$4xe^x + 3xe^{x+4} = 0$$

$$\Leftrightarrow 4xe^x + 3e^4e^x = 0$$

$$\Leftrightarrow e^x(4x+3e^4)=0$$

$$\Leftrightarrow 4x + 3e^4 = 0 \text{ car } e^x > 0 \forall x \in \mathbb{R}$$

$$\Leftrightarrow x = \frac{-3e^4}{4}$$

$$e^{2x} - e^x - e^{x+1} + e = 0$$

$$\Leftrightarrow (e^x)^2 - e^x - e^x e^1 + e = 0$$

$$\Leftrightarrow (e^x)^2 - e^x(1+e) + e = 0$$

$$\Leftrightarrow X^2 - (1+e)X + e = 0$$
 en posant $X = e^x$

$$\Delta = (-(1+e))^2 - 4 \times 1 \times e = (e-1)^2 > 0$$
. L'équation admet donc deux solutions réelles distinctes :

$$X_1 = \frac{-(-1+e) - \sqrt{(e-1)^2}}{2 \times 1}$$
 et $X_2 = \frac{-(-1+e) + \sqrt{(e-1)^2}}{2 \times 1}$

Puisque $X = e^x$ alors les solutions sont $e^x = 1$ et $e^x = e$ autrement dit x = 0 et x = 1.

d.
$$e^{x^2-3x}-e^8=0$$

$$\Leftrightarrow e^{x^2 - 3x} = e^8$$

$$\Leftrightarrow x^2 - 3x = 8$$

$$\Leftrightarrow x^2 - 3x - 8 = 0$$

 $\Delta = (-3)^2 - 4 \times 1 \times (-8) = 41 > 0.$ L'équation admet donc deux solutions réelles distinctes :

$$x_1 = \frac{-(-3) - \sqrt{41}}{2 \times 1} = \frac{3 - \sqrt{41}}{2}$$
 et $x_2 = \frac{-(-3) + \sqrt{41}}{2 \times 1} = \frac{3 + \sqrt{41}}{2}$

Exercice n°7

a.
$$e^x > e^4$$

$$\Leftrightarrow x > 4$$

$$S=]4; +\infty[$$

b. $e^{-2x} > 1$

$$\Leftrightarrow e^{-2x} > e^0$$

$$\Leftrightarrow -2x > 0$$

$$\Leftrightarrow x > 0$$

$$S =]0; + \infty[$$

c. $e^{2x} < e^6$

$$\Leftrightarrow 2x < 6$$

$$\Leftrightarrow x < 3$$

$$S =]-\infty;3[$$

d.
$$e^{3x+4} \le e^{13}$$

$$\Leftrightarrow 3x + 4 \leqslant 13$$

$$\Leftrightarrow x \leqslant \frac{11}{3}$$

$$S = \left[-\infty; \frac{11}{3} \right]$$

e. $e^{6x-3} \ge e^{6x+1}$

$$\Leftrightarrow 6x - 3 \ge 6x + 1$$

$$\Leftrightarrow -3 \geqslant 1$$

Ce qui est impossible. Il n'y a donc aucune solution.

f. $e^{-3x+1} > e^{-4x+5}$

$$\Leftrightarrow -3x + 1 > -4x + 5$$

$$\Leftrightarrow x > 4$$

$$S=]-\infty;4[$$

> Suite géométrique et fonction exponentielle

Exercice n°8

1.
$$u_0 = e^{2 \times 0} = 1$$
, $u_1 = e^{2 \times 1} = e^2$ et $u_2 = e^{2 \times 2} = e^4$.

2.
$$\frac{u_n=1}{u_n}=\frac{e^{2(n+1)}}{e^{2n}}=\frac{e^{2n}\times e^2}{e^{2n}}=e^2$$
. Il s'agit d'une suite géométrique de premier terme 1 et de raison e^2 .

3. La fonction qui a x associe e^x est strictement croissante sur \mathbb{R} . La suite (u_n) est donc strictement croissante sur \mathbb{N} .

Exercice n°9

- 1. $u_0 = e^{5 \times 0} = 1$, $u_1 = e^{5 \times 1} = e^5$ et $u_2 = e^{5 \times 2} = e^{10}$.
- 2. $\frac{u_{n+1}}{u_n} = \frac{e^{5(n+1)}}{e^{5n}} = \frac{e^{5n} \times e^5}{e^{5n}} = e^5$. Il s'agit donc d'une suite géométrique de premier terme 1 et de raison e^5 .
- 3. La fonction qui a x associe e^x est strictement croissante sur \mathbb{R} . La suite (u_n) est donc strictement croissante sur \mathbb{N} .

Exercice n°10

1. $u_0 = 40$, $u_1 = 40 \times 0$, 9 = 36 et $u_2 = 36 \times 0$, 9 = 32, 4.

Pour tout entier naturel $n: u_{n+1} = u_n \times 0, 9$. Il s'agit donc d'une suite géométrique de premier terme 40 et de raison 0,9.

- 2. $u_n = 40 \times 0, 9^n = 40 \times e^{-0.105n}$.
- 3. Cette suite suit une croissance exponentielle.

Exercice n°11

- 1. $4500 \times 1,03 = 4635$. En 2024, Jean-Kevin aura 4 635€ sur son livret.
- 2. $u_{n+1} = u_n \times 1,03$. C'est une suite géométrique de premier terme 4 500 et de raison 1,03. On a donc pour tout entier naturel $n: u_n = 4500 \times 1,03^n$.
- 3. $u_n = 4500 \times e^{0.03n}$.
- 4. On souhaite que $u_n > 10~000$. Ce qui est équivalent à :

$$4500 \times e^{0,03n} > 10000$$

$$\Leftrightarrow e^{0,03n} > \frac{20}{9}$$

$$\Leftrightarrow e^{0,03n} > e^{0,789}$$

$$\Leftrightarrow 0,03n>0,789$$

 $\Leftrightarrow n > 26, 6.$ Ce sera donc à partir de la 27ème année.