Un code correcteur

Etude du code de Hamming (7;4)

Un bit est une information représentée par un 0 ou un 1.

On considère un mot formé de 4 bits que l'on note b_1 , b_2 , b_3 , b_4 . Le mot 1101 permet donc d'avoir $b_1 = 1$, $b_2 = 1$, $b_3 = 0$ et $b_4 = 1$.

On ajoute à cette liste une clé de contrôle $c_1c_2c_3$ formée de trois bits :

- c_1 est le reste de la division euclidienne de $b_2 + b_3 + b_4$ par 2
- c_2 est le reste de la division euclidienne de $b_1 + b_3 + b_4$ par 2
- c_3 est le reste de la division euclidienne de $b_1 + b_2 + b_4$ par 2

On appelle alors « message » la suite de 7 bits formée des 4 bits du mot et des 3 bits de contrôle.

Exercice n°1

- 1. a. Justifier que c_1 , c_2 et c_3 ne peuvent prendre comme valeurs que 0 ou 1.
 - b. Calculer la clé de contrôle associée au mot 1001.
- 2. Soit $b_1b_2b_3b_4$ un mot de 4 bits et $c_1c_2c_3$ la clé associée. Montrer que si on change la valeur de b_1 et que l'on recalcule la clé alors seule la valeur de c_1 est inchangée.
- 3. On suppose que, durant la transmission du message, au plus un des 7 bits a été transmis de façon erronée. A partir des 4 premiers bits du message reçu, on recalcule les 3 bits de contrôle, et on les compare avec les bits de contrôle reçus.

Recopier et compléter le tableau ci-dessous.

La lettre F signifie que le bit de contrôle reçu ne correspond pas au bit de contrôle calculé, et J que ces deux bits sont égaux.

Bit erroné								
Bit de	b_1	b_2	b_3	b_4	c_1	c_2	c_3	Aucun
contrôle								
calculé								
c_1	J							
c_2	F	·						
c_3	F							

- 4. Montrer que si un seul bit reçu est erroné, on peut dans tous les cas déterminer lequel, et corriger l'erreur.
- 5. Voici deux messages de 7 bits :

A = 0100010 B = 1101001

On admet que chacun d'eux comporte au plus une erreur de transmission. Dire s'ils comportent une erreur, et la corriger le cas échéant.

> Correction des exercices

Exercice n°1

- 1. Il s'agit de restes dans la division euclidienne par 2. Or tout entier n s'écrit 2n + 0 ou 2n + 1. Les seuls restes possibles sont donc 0 ou 1.
- 2. Avec ce mot, on a $b_1 = 1$, $b_2 = 0$, $b_3 = 0$ et $b_4 = 1$.

 $b_2 + b_3 + b_4 = 1$. Le reste c_1 vaut donc 1.

 $b_1 + b_3 + b_4 = 2$. Le reste c_2 vaut donc 0.

 $b_1 + b_1 + b_4 = 2$. Le reste c_3 vaut donc 0.

La clé de contrôle du mot 1001 est donc 100.

3. Changeons la valeur de b_1 par un bit b'_1 . On a alors $b'_1 \equiv b_1 + 1$ (2).

La valeur de c_1 ne dépend pas de b_1 donc c_1 ne varie pas.

 $b'_1 + b_2 + b_4 \equiv b_1 + b_3 + b_4 + 1$ (2) ce qui modifie la valeur de c_2 .

 $b'_1 + b_2 + b_4 \equiv b_1 + b_2 + b_4 + 1$ (2) ce qui modifie la valeur de c_3 .

4. Voici le tableau complété :

Bit erroné Bit de contrôle calculé	b_1	b_2	b_3	b_4	c_1	c_2	c_3	Aucun
c_1	J	F	F	\overline{F}	F	J	J	J
c_2	F	J	F	F	J	F	J	J
c_3	F	F	J	F	J	J	F	J

5. Les huit triplets du tableau (J; F; F), (F; J; F), ..., (J; J; J) sont tous différents.

Quand on reçoit un message, on calcule les codes de contrôle et on les compare avec ceux que l'on a reçus. Selon le triplet obtenu, on sait quel est le bit erroné, s'il y en a un.

- 6. Pour le message A:
 - $b_2 + b_3 + b_4 = 1 + 0 + 0 = 1$ qui a pour reste 1 dans la division euclidienne par 2.
 - $b_1 + b_3 + b_4 = 0 + 0 + 0 = 0$ qui a pour reste 0 dans la division euclidienne par 2.
 - $b_1 + b_2 + b_4 = 0 + 1 + 0 = 1$ qui a pour reste 1 dans la division euclidienne par 2.

Le code correct est 101 alors que le code reçu est 010.

La différence entre les deux codes correspond au triplet (F; F; F).

D'après le tableau, c'est donc b_4 qui est erroné et le bon message est donc 0101010.

Pour le message B:

- $b_2 + b_3 + b_4 = 1 + 0 + 1 = 2$ qui a pour reste 0 dans la division euclidienne par 2.
- $b_1 + b_3 + b_4 = 1 + 0 + 1 = 2$ qui a pour reste 0 dans la division euclidienne par 2.
- $b_1 + b_2 + b_4 = 1 + 1 + 1 = 3$ qui a pour reste 1 dans la division euclidienne par 2.

Le code correct est 001 qui est identique au code reçu. Il n'y a donc pas d'erreur dans le message B.