Exercices sur les nombres complexes (2)

> Module et argument d'un nombre complexe, affixe d'un point

Exercice n°1 Détermine le module et un argument des nombres complexes suivants :

a.
$$z = -1 + i\sqrt{3}$$

b.
$$z = 3 - 3i$$

$$\mathbf{c.} \quad z = \frac{-\sqrt{2}}{1+i}$$

Exercice n°2 On se place dans le plan complexe $(O; \vec{u}, \vec{v})$.

On considère les points A(2; 2), B($-\sqrt{3}$; 1) et le point C d'affixe $z_{\rm C}=2i$.

1. Donner la forme algébrique de $z_{\rm A},$ l'affixe de A puis déterminer son module.

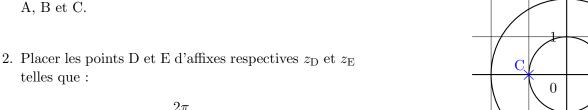
2. Soit A'(2; 0). Quelle est la nature de OAA'? En déduite un argument de z_A .

3. Calculer $|z_{\rm B}|,\,|z_{\rm C}|$ et $|z_{\rm B}-z_{\rm C}|.$ Donner une interprétation géométrique de ces résultats.

4. Déterminer alors un argument $z_{\rm B}$.

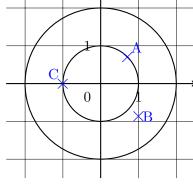
Exercice n°3

1. Déterminer un argument de chaque affixe des points A, B et C.



$$|z_{\rm D} = 2| \text{ et } \arg(z_{\rm D}) = -\frac{2\pi}{3}(2\pi);$$

$$|z_{\rm E}| = 3 \text{ et } \arg(z_{\rm E}) = \frac{3\pi}{4}(2\pi).$$



 $\underline{\textbf{Exercice } n^{\circ} \textbf{4}} \quad \text{Donner la forme trigonom\'etrique des nombres suivants}:$

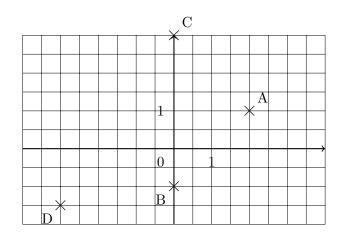
a.
$$z = (-1+i)^5$$

b.
$$z = (\sqrt{3} - i)^4$$

c.
$$z = \frac{(\sqrt{2} - 1)i}{1 - i}$$

Exercice n°5 On considère le plan complexe ci-dessous :

- 1. Déterminer les formes algébriques des points A, B, C et D.
- 2. Placer les points F et G dont les affixes respectives sont z=3-i et $z'=\frac{3}{2}i$.
- 3. Déterminer l'affixe du milieu du segment [AD].



Exercice n°6 Déterminer l'écriture algébrique des nombres complexes suivants :

a.
$$|z| = 5$$
 et $\arg(z) = -\frac{\pi}{3}$

b.
$$|z| = 2 \text{ et } \arg(z) = -\frac{\pi}{2}$$

Exercice $n^{\circ}7$ On considère la suite de nombres complexes (z_n) définie par :

$$z_0 = \sqrt{3} - i$$
 et $\forall n \in \mathbb{N}, z_{n+1} = (1+i)z_n$

On pose $u_n = |z_n|$.

- 1. Calculer u_0 .
- 2. Montrer que la suite (u_n) est géométrique de raison $\sqrt{2}$ et de premier terme 2.
- 3. Exprimer u_n en fonction de n.
- 4. Déterminer la limite de (u_n) .

Exercice n°8 On se place dans le plan complexe $(O; \vec{u}, \vec{v})$.

Pour tout entier naturel n, on note A_n le point d'affixe z_n défini par :

$$z_0 = 1$$
 et $\forall n \in \mathbb{N}, z_{n+1} = \left(\frac{3}{4} + \frac{\sqrt{3}}{4}i\right)z_n$

On définit la suite (r_n) par $r_n = |z_n|$.

- 1. Donner la forme trigonométrique de $\frac{3}{4} + \frac{\sqrt{3}}{4}i$.
- 2. Montrer que la suite (r_n) est géométrique de raison $\frac{\sqrt{3}}{2}$.
- 3. Déterminer, en fonction de n, la mesure du segment $[A_nA_{n+1}]$.