Exercices sur les nombres complexes (3)

> Passer de la forme algébrique à la forme exponentielle et inversement

Exercice n°1 Déterminer la forme algébrique des nombres complexes suivants :

a.
$$z = 3e^{i\pi}$$

b.
$$z = \sqrt{2}e^{i\frac{\pi}{4}}$$

c.
$$z = 2\sqrt{3}e^{-i\frac{\pi}{6}}$$

Exercice n°2 Déterminer la forme exponentielle des nombres complexes suivants :

a.
$$z = 5$$

b.
$$z = -3$$

c.
$$z = -3i$$

d.
$$z = -3 + 3i$$

e.
$$z = -2\sqrt{3} - 2i$$

f.
$$z = \sqrt{3} - 3i$$

Exercice n°3 On considère le nombre complexe $z = re^{i\theta}$ où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

- 1. Déterminer la forme exponentielle des nombres \bar{z} et -z.
- 2. Montrer que $2e^{-i\frac{\pi}{3}} = -2e^{i\frac{2\pi}{3}}$.
- 3. En déduire la forme exponentielle du nombre $2e^{-i\frac{\pi}{3}} + 3e^{i\frac{2\pi}{3}}$

> Choisir une forme adaptée pour résoudre un problème

Exercice n°4

On considère dans le plan complexe muni d'un repère orthonormé direct (O; \vec{u} , \vec{v}) les points A, B et C d'affixes respectives $z_A = 3 + i\sqrt{3}$, $z_B = -\sqrt{3} + 3i$ et $z_C = z_1 + z_B$.

- 1. Déterminer une forme exponentielle de z_A et z_B .
- 2. En déduire une mesure de l'angle $(\overrightarrow{OA}, \overrightarrow{OB})$.
- 3. Déterminer la nature du quadrilatère OACB.

Exercice n°5 On considère les nombres complexes $z_1 = 1 + i\sqrt{3}$ et $z_2 = 6\left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right)$.

- 1. Déterminer une forme trigonométrique de z_1 .
- 2. Préciser un argument de z_2 .
- 3. Ecrire le produit z_1z_2 sous forme algébrique.
- 4. En utilisant la notation exponentielle, écrire le produit z_1z_2 sous forme trigonométrique.
- 5. En déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

> Utiliser les formules de Moivre et d'Euler

Exercice n°6 On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos^3(x)$.

- 1. Linéariser l'expression f(x).
- 2. En déduire la valeur de $\int_0^{\frac{\pi}{2}} \cos^3(x) dx$.

Exercice $n^{\circ}7$ Soit $\theta \in \mathbb{R}$.

- 1. En utilisant la formule de Moivre, montrer que $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ et que $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$.
- 2. Montrer que $\cos(3\theta) = 4\cos^3(\theta) 3\cos(\theta)$ et que $\sin(3\theta) 4\sin^3(\theta)$.
- 3. Montrer que $\cos(4\theta) = 8\cos^4(\theta) 8\cos^2(\theta) + 1$ et que $\sin(4\theta) = 4\cos^3(\theta)\sin(\theta) 4\cos(\theta)\sin^3(\theta)$.